Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

 

Feds back probe of understudied gut nervous system

May 17, 20218 min
micro organisms cells background

Rice University neurobiologist Rosa Uribe will be hitting the books for her latest study of the digestive system, but some of the pages in her books are a billion years old.

Uribe, an assistant professor of biosciences, has won a five-year, $2 million R01 grant from the National Institutes of Health to study how the enteric nervous system forms.

If you didn’t realize you had an enteric nervous system, you’re not alone.

“Most people don’t realize they have it until there’s something wrong with it, and they have to go to the gastroenterologist,” Uribe said. “It is basically the nervous system that resides within your entire gut. It is separate from your spinal cord, and it is separate from your brain. Meaning, it can function on its own to help move the food that you digest from one end of the gut to the other in a healthy way.”

Uribe, who was recruited to Rice in 2017 with a CPRIT Scholar grant from the Cancer Prevention and Research Institute of Texas, specializes in studying the development of the enteric nervous system. When that development goes awry, it can lead to chronic and sometimes life-threatening illnesses, including neuroblastoma, a common pediatric cancer, and Hirschsprung disease, a congenital condition that frequently causes chronic intestinal obstructions and severe constipation.

“We know an embarrassingly small amount of information about how the enteric nervous system forms,” Uribe said. “We have a long way to go to understand the fundamental mechanisms of how it forms, and that’s the major goal of this R01.”

It is impossible to directly study the development of the enteric nervous system in humans. For ethical reasons, human embryos cannot be studied beyond the 14th day after fertilization, which is well before most of the development of the enteric nervous system takes place. Instead, Uribe and her students use zebrafish, small egg-laying fish whose translucent embryos develop outside the female’s body. Using a variety of microscopes and genetic tools, Uribe and her students can peer directly inside the embryos and make detailed observations of the neural crest cells, the embryonic stem cells that give rise to the enteric nervous system.

During enteric nervous system development, neural crest cells migrate down the gut. At each step in their journey, they’re prompted with biochemical cues that tell them whether to keep moving or stop and what cells to become when they stop. The transformation from a malleable neural crest stem cell into a working neuron or one of the many other cell types in the enteric nervous system is a multistep process, and deciphering the mechanisms of this process is the main aim of the project.

The five-year study builds upon a major breakthrough Uribe’s lab achieved in February with a new tool called single-cell transcriptomics, which allowed them to build the first open catalog of activated genes in neural crest cells at many stages on the enteric development path.

“It really is like a library, where you have both books and a catalog of what’s in those books,” Uribe said. “And when you open a book, you see the content and information within that book. But here in our situation, a book is a cell.”

Single-cell transcriptomics creates the books in Uribe’s library by measuring messenger RNA in a way that allows biologists to see which genes are activated in individual cells in a sample. In Uribe’s case, the samples are surgically removed portions of zebrafish embryos in which neural crest cells are developing. Thanks to a proprietary process that dissociates, isolates, and individually bar-codes each cell, Uribe’s team was able to catch neural crest cells in the act of becoming neurons or glial cells.

“We did this for about 100 embryos,” Uribe said. “All of the cells were grouped in one single-cell suspension, and all of the data was mapped back to the zebrafish genome. We ended up with massive lists of genes that were either expressed or not expressed in those cells, and that has helped us start to see the bigger picture because we’re not looking at just one or two cells, we’re looking at thousands of cells. And with the power of thousands of cells, you can pull out potentially interesting patterns about gene expression and how, in our case, a developing embryo forms itself.”

“We will continue to leverage this for various questions for subpopulations of cells at different stages of development,” she said. “For example, you can take an embryo and expose it to some type of experiment, like a pharmacological reagent or a genetic alteration, and then you can see what those changes do. Using the single-cell transcriptomic method, you can compare it to the books in your library and see how you’re editing the story with those changes. What pages are different and how? And does it change the number and type of books in the library?”

MJH footer logo with red letters

Medical Journal – Houston is the leading source of healthcare business news. With extremely relevant content, late-breaking news and monthly exclusives from industry experts, MJH News has created a winning combination of must-read editorial that physicians and hospital executives eagerly anticipate month after month. MJH News is the resource that provides everything they need in one place, and it is a high honor that they rely upon Medical Journal – Houston to keep their practice or hospital on the cutting edge.

Archives