Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

 

Study identifies RNA-binding proteins as novel drivers of DNA damage repair defect

December 16, 20232 min
Concept of biochemistry with dna molecule on blue background

Mutations in DNA repair genes are known drivers of hereditary cancers. However, only a small fraction of patients with hereditary breast or ovarian cancers has BRCA1/2 mutations, which are involved in homologous recombination (HR) DNA repair.

Researchers led by Nidhi Sahni, Ph.D., calculated scores across tumors from The Cancer Genome Atlas to comprehensively identify tumors that were either positive or negative for HR defects. Around 75% of tumors with a positive HR score did not have defects in known HR genes, but the researchers identified nearly 100 candidate HR-related genes. They found that RNA-binding protein (RBP) genes were particularly enriched in genome-wide screens for cancer risk, highlighting their potential role as drivers of HR repair.

Previous studies have linked RBPs to DNA damage repair, and this study provides further insights into specific RBPs and their role as novel drivers of HR deficiency, either directly or via regulating other HR repair genes. These findings have implications for screening, patient risk stratification and developing therapeutic strategies.

MJH footer logo with red letters

Medical Journal – Houston is the leading source of healthcare business news. With extremely relevant content, late-breaking news and monthly exclusives from industry experts, MJH News has created a winning combination of must-read editorial that physicians and hospital executives eagerly anticipate month after month. MJH News is the resource that provides everything they need in one place, and it is a high honor that they rely upon Medical Journal – Houston to keep their practice or hospital on the cutting edge.

Archives